Cell-Mediated Degradation Regulates Human Mesenchymal Stem Cell Chondrogenesis and Hypertrophy in MMP-Sensitive Hyaluronic Acid Hydrogels

نویسندگان

  • Qian Feng
  • Meiling Zhu
  • Kongchang Wei
  • Liming Bian
چکیده

Photocrosslinked methacrylated hyaluronic acid (MeHA) hydrogels support chondrogenesis of encapsulated human mesenchymal stem cells (hMSCs). However, the covalent crosslinks formed via chain polymerization in these hydrogels are hydrolytically non-degradable and restrict cartilage matrix spatial distribution and cell spreading. Meanwhile, cells are known to remodel their surrounding extracellular matrix (ECM) by secreting catabolic enzymes, such as MMPs. Hydrogels that are created with bifunctional crosslinkers containing MMP degradable peptide sequences have been shown to influence hMSC differentiations. However, crosslinks formed in the MMP-degradable hydrogels of these previous studies are also prone to hydrolysis, thereby confounding the effect of MMP-mediated degradation. The objective of this study is to develop a MMP-sensitive but hydrolytically stable hydrogel scaffold and investigate the effect of MMP-mediated hydrogel degradation on the chondrogenesis of the encapsulated hMSCs. Hyaluronic acid macromers were modified with maleimide groups and crosslinked with MMP-cleavable peptides or control crosslinkers containing dual thiol groups. The chondrogenesis of the hMSCs encapsulated in the hydrolytically stable MMP-sensitive HA hydrogels were compared with that of the MMP-insensitive HA hydrogels. It was found that hMSCs encapsulated in the MMP-sensitive hydrogels switched to a more spreaded morphology while cells in the MMP-insensitive hydrogels remained in round shape. Furthermore, hMSCs in the MMP-sensitive hydrogels expressed higher level of chondrogenic marker genes but lower level of hypertrophic genes compared to cells in the MMP-insensitive hydrogels. As a result, more cartilage specific matrix molecules but less calcification was observed in the MMP-degradable hydrogels than in the MMP-insensitive hydrogels. Findings from this study demonstrate that cell-mediated scaffold degradation regulates the chondrogenesis and hypertrophy of hMSCs encapsulated in HA hydrogels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels.

Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matr...

متن کامل

The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels.

Synthetic hydrogel scaffolds that can be used as culture systems that mimic the natural stem cell niche are of increased importance for stem cell biology and regenerative medicine. These artificial niches can be utilized to control the stem cell fate and will have potential applications for expanding/differentiating stem cells in vitro, delivering stem cells in vivo, as well as making tissue co...

متن کامل

Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of deg...

متن کامل

Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.

Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffol...

متن کامل

Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.

Mesenchymal stem cells (MSCs) are multipotent progenitor cells whose plasticity and self-renewal capacity have generated significant interest for applications in tissue engineering. The objective of this study was to investigate MSC chondrogenesis in photo-cross-linked hyaluronic acid (HA) hydrogels. Because HA is a native component of cartilage, and MSCs may interact with HA via cell surface r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014